a2 United States Patent

Lipshits et al.

US009459871B2

US 9,459,871 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM OF IMPROVED LOOP DETECTION
AND EXECUTION

Applicant: INTEL CORPORATION, Santa Clara,
CA (US)

Inventors: Masha Lipshits, Haifa (IL); Lihu

Rappaport, Haifa (IL); Shantanu

Gupta, San Jose, CA (US); Franck

Sala, Haifa (IL); Naveen Kumar, San

Jose, CA (US); Allan D. Knies,

Burlingame, CA (US)

Assignee: Intel Corporation, Santa Clara, CA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 659 days.

Appl. No.: 13/731,377
Filed: Dec. 31, 2012

Prior Publication Data

US 2014/0189331 Al Jul. 3, 2014

Int. CL.

GO6F 9/30 (2006.01)

GO6F 9/38 (2006.01)

GO6F 9/32 (2006.01)

U.S. CL

CPC GO6F 9/30065 (2013.01); GOGF 9/325

(2013.01); GO6F 9/381 (2013.01); GO6F
9/3844 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,740,419 A * 4/1998 Pottercco...... GOGF 9/325
712/23
5,784,602 A * 7/1998 Glasscccoeeene. GOGF 9/30014
712/220
5,881,257 A * 3/1999 Glass ... GOGF 9/30014
712/200
5,881,263 A * 3/1999 Yorkcccoeenn. GOGF 9/30043
712/217
6,003,128 A * 12/1999 Tranccoceneee. GOG6F 9/3844
712/23
6,145,076 A * 11/2000 Gabzdyl GOGF 9/325
712/241
6,269,440 B1* 7/2001 Fernando GOGF 8/452
712/241
(Continued)
FOREIGN PATENT DOCUMENTS
EP 2674858 A2 * 12/2013

OTHER PUBLICATIONS

‘Instruction Fetch Energy Reduction Using Loop Caches for
Embedded Applications with Small Tight Loops’ by Lea Hwang Lee
et al., copyright 1999, ACM.*

(Continued)

Primary Examiner — Steven Snyder
(74) Attorney, Agent, or Firm — Kenyon & Kenyon LLP

(57) ABSTRACT

A method, system, and computer program product for iden-
tifying loop information corresponding to a plurality of loop
instructions. The loop instructions are stored into a queue.
The loop instructions are replayed from the queue for
execution. Loop iteration is counted based on the identified
loop information. A determination is made of whether the
last iteration of the loop is done. If the last iteration is not
done, then embodiments continue replaying the loop instruc-
tions, until the last iteration is done.

17 Claims, 8 Drawing Sheets

Identify Loop Information
410

I

Store Loop Instructions Into
Queue

S A

Replay Loop Instructions from
Queue for Exeaution
430

S S

Count Loop Iteration based on
Loop Information
k=)

- - NO
- Last Iteration ™~~____
< oflLoopDone? >
e ®m T

YES

Execute Outside-Loop Instructions
460

400

US 9,459,871 B2

Page 2
(56) References Cited 2012/0185714 Al* 7/2012 Chungccocc... GOG6F 1/3203
713/323
U.S. PATENT DOCUMENTS 2012/0226894 Al* 9/2012 Sekicoevenene. GOG6F 9/30065
712/241
6,367,071 BL* 4/2002 Ca0 wvvvevvereeeererran GO6F 9/381 2013/0339699 Al* 12/2013 Blasco-Allue GO6F 9/381
712/E9.058 712/241
6,959,379 B1* 10/2005 Wojcieszak et al. 712241 2013/0339700 Al* 12/2013 Blasco-Allue et al. 712/241
7,620,803 B2* 11/2009 Kudo ..oocovovvevereean. GO6F 9/325 2014/0007061 Al* 1/2014 Perkins GO6F 9/381
712/200 717/150
7.873.820 B2* 1/2011 Knoth oo, 712/241 2014/0136822 Al* 52014 Suggs et al. ... 712/241
7.886.134 B2* 2/2011 Mizumo .. 212241 2014/0189306 Al* 7/2014 Merten et al. 712/208
9,038,042 B2* 5/2015 Perkinscooun.... GO6F 9/381 2015/0309795 Al* 10/2015 Kurdcccovernnes GO6F 9/30145
717/150 712/241
9,286,066 B2* 3/2016 Seki ..ocoevooreerenenn. GOG6F 9/30065 2015/0309797 Al* 10/2015 Wilsonoceeeee GO6F 9/3013
2002/0016887 A1* 2/2002 Scalesc....... GOGF 8/4452 712217
711/140
2002/0144092 Al* 10/2002 Topham G06F751§/24}421?% OTHER PUBLICATIONS
3k
%883‘;85;338? i} * L égggi %ﬁgg etal e GOJ;S%; ‘Instruction Buffering Exploration for Low Energy Embedded Pro-
712/237 cessors’ by Tom Vander Aa et al., Journal of Embedded Computing
2004/0123075 Al* 6/2004 Almogcoocovvvvvvinencne 712/207 Low-power Embedded Systems, vol. 1 Issue 3, Aug. 2005, pp.
2005/0102659 Al* 5/2005 Singhccoccenne. GO6F 9/30101 341-351.%
2006/0212685 Al* 9/2006 Raghavan GOG6F ;/137(;(1)22 ‘Revolver: Processor Architecture for Power Efficient Loop Execu-
712/225 tion’ by Mitchell Hayenga et al., copyright 2014, IEEE.*
2007/0113059 A1* 5/2007 Tranccccoeeviimnennns 712/241 ‘Power-Efficient Loop Execution Techniques’ dissertation by
2009/0024842 Al* 1/2009 Clarkccccoovnne GO6F 9/264 Mitchell Bryan Hayenga, University of Wisconsin-Madison, copy-
N 712/241 right by Mitchell Bryan Hayenga, 2013.*
2009/0235052 Al 972009 Kudo ..coovoireiniinnns G067F lggég ‘Power Impact of Loop Buffer Schemes for Biomedical Wireless
5010/0049958 Al* 2/2010 Vaskevich GOGF 9/381 Sensor Nodes’ by Antonio Artes et al., published—sensors, Nov. 6,
"""""""" 712241 20127
2012/0179924 Al* 7/2012 Sugiyama GO6F 1/3206 . .
713/320 * cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 8 US 9,459,871 B2

PROCESSOR EXECUTION UNIT 108
T PACKED INSTRUCTION
CACHE REGISTER FILE SET 109
104 106 —
| A PROCESSOR BUS
110J | |
MEMORY
GRAPHICS/ MEMORY INSTRUCTION
VIDEO CARD { 114 | CONTROLLER HUB
112 11e DATA
120
122
LEGACY
DATA STORAGE O CONTROLLER
124 — USER INPUT
INTERFACE
WIRELESS Vo
TRANSCEIVER K| CONTROLLER HUB ——
126 130
K—7] EXPANSION PORT
FLASH BIOS <:> AUDIO
128 K= CONTROLLER

i

NETWORK
CONTROLLER

199 134 FIG. 1A

U.S. Patent Oct. 4, 2016

Sheet 2 of 8

US 9,459,871 B2

A
v

A
v

A 4

A
\ 4

PROCESSING
CORE
159 [142 | 144
P
143 |le—>| 145
SDRAM CTL
146
SRAM CTL
147

/10

BRIDGE 1>
154

UART s
155

A
v

BURST FLASH
INTERFACE
148

T «—tr
156

A
\ 4

PCMCIA/CF
CARD CTL
149

BLUETOOTH
UART >
157

A
A 4

LCD CTL
150

A
v

DMA CTL
151

/10

EXPANSION 1T
INTERFACE
158

(38

A
| 4

ALTERNATE BUS
MASTER INTERFACE
152

—
~
o

FIG. 1B

J1 'Old

US 9,459,871 B2

- GOl
89T R 89t o o1 k .
JOV4YILNI W3LSAS I« IHOVD -
ERELI ol 991
HOSSID0¥d NIV

Sheet 3 of 8

Oct. 4, 2016

(YA

[4
J
€91

<t
O
-
A

y

191
J0SS3I00Ud0D AdNIS

[=
|
-

(=
-~

U.S. Patent

US 9,459,871 B2

Sheet 4 of 8

Oct. 4, 2016

U.S. Patent

¢ Old

JHOVOI | T3A3101

JHOVO | 13A31 01

A

A 4 A 4

(%4
1V 1SV

A 4

OTZ YHOMLAN SSVdAdL 80z
/3714 H3L1S193Y dd WHOMLIN SSVdAL / 3714 ¥ILSIDTH HIDILNI
A + A A A A A
L
902 ¥37NA3HOS v0c 20¢ ¥ITNAIHOS
FEERE(S MITNATHIS dd TVHIANID/MOTS ¥ITINAIHIOS 1SVA AYOWINW
7 Y 1 1 4
3N3ANO don
3NIND dON LNIOd ONILVO14/4IDILNI ANOWAN
4 2
HINVYNIY HALSIOTH/HOLYIOT1TY
h
(7274 P [1]:¥4 €02
3N3No don | JHOVD 3OVHL INIDN3I ¥3a¥0 40 1NO
ze 1
NOY Y44 Jl
30020UDIN 4300234 002
NOILONYLSNI HOSSIN0Hd
+
9z¢
102 FEIEEENE!
dNT LNONA NOILONYLSNI

e
MO014
3x3

U.S. Patent Oct. 4, 2016 Sheet 5 of 8 US 9,459,871 B2

315
A 1/
|
300 ! E— sha _—— 310
1 | PRI
! |
i | PR
b PROCESSOR
i |
— 345 _— 320 — 340
DISPLAY GMCH MEMORY
_— 350
ICH
360
\ /-370
EXTERNAL
GRAPHICS PERIPHERAL
DEVICE

FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 6 of 8 US 9,459,871 B2

Identify Loop Information
410

l

Store Loop Instructions Into
Queue
420

l

Replay Loop Instructions from
Queue for Execution e

430

l

Count Loop Iteration based on
Loop Information
440

NO

Last Iteration
of Loop Done?
450

YES

Execute Outside-Loop Instructions
460

FIG. 4
400

US 9,459,871 B2

Sheet 7 of 8

Oct. 4, 2016

U.S. Patent

S "OId

065

N UopNOSX3

" pu3 yoeg pJemoL PUZ JUOL PIEMOL
PIpa4dsiii
TES JajjonucD
(1744 L1149
uonN|oSY youelg e ar | ¥HN UomIPId youeg
............... —
Npug s | o
10109)8Q Hoqy uondipald
pue weans doo Yyouelg
— S
8% 058 o1s
Aedoy doo | 9NSND uonon.sur SUOIPNISUT 19p003Q LOMINJISUL [oied yoja4 | SUPED UoRONASUT

U.S. Patent

Oct. 4, 2016 Sheet 8 of 8
Original Instructions:
Loop_A: N Times
Do
j.r.npnz Loop_A

US 9,459,871 B2

Translation Optimization Event Tracking
610 620
First Translation Later Translation
Translated Code: Re-translated Code:
X Tim: N Tim

Loop_A: LH i=0: s Loop_A: LH i=N: =

Do Do

Jmpnz Loop_A Jmpnz Loop_A

FIG. 6

US 9,459,871 B2

1
SYSTEM OF IMPROVED LOOP DETECTION
AND EXECUTION

FIELD OF THE DISCLOSURE

The present disclosure relates to a system of improved
loop prediction and execution.

DESCRIPTION OF RELATED ART

Microprocessors typically may include components that
manages detection and execution of instruction loops. A
microprocessor may detect small-sized loops with a large
number of iterations. Once detected, the loops are repeatedly
executed (replayed) from a queue, to save the power needed
for repeating fetching and decoding the loop instructions.

Hardware (HW) loop stream detection (LSD) may have a
long “learning” time for detecting eligible loops. The micro-
processor may detect short infinitely predicted loops, by
tracking instruction jump and branch history. If the same
instruction pointer with the same branch history are
executed repeatedly, the loop may be “locked” and marked
for replay from the queue. If the loop “learning” time is long,
the loop execution may require additional power and delays.

When the loop exits, there may be a “mispredict.” A
mispredict every time the loop exits may cause a flush of
instruction pipeline and more delays.

Thus, there is a need for an improved way of detecting and
executing loops.

DESCRIPTION OF THE FIGURES

Embodiments are illustrated by way of example and not
limitation in the Figures of the accompanying drawings:

FIG. 1A illustrates a block diagram of a system according
to one embodiment;

FIG. 1B illustrates a block diagram of a system according
to one embodiment;

FIG. 1C illustrates a block diagram of a system according
to one embodiment;

FIG. 2 illustrates a block diagram of a processor accord-
ing to one embodiment;

FIG. 3 illustrates a block diagram of a computer system
according to one embodiment;

FIG. 4 illustrates a method according to one embodiment;

FIG. 5 illustrates a block diagram of a processor accord-
ing to one embodiment;

FIG. 6 illustrates a block diagram of a code translation
optimization according to one embodiment.

DETAILED DESCRIPTION

The following description describes a method and system
for improved loop detection and execution within or in
association with a processor, computer system, or other
processing apparatus. In the following description, numer-
ous specific details such as processing logic, processor
types, micro-architectural conditions, events, enablement
mechanisms, and the like are set forth in order to provide a
more thorough understanding of embodiments of the present
disclosure. It will be appreciated, however, by one skilled in
the art that the disclosure may be practiced without such
specific details. Additionally, some well known structures,
circuits, and the like have not been shown in detail to avoid
unnecessarily obscuring embodiments of the present disclo-
sure.

10

15

20

25

30

35

40

45

50

55

60

65

2

One embodiment of the present disclosure may provide a
single core or multi-core processor. The processor may
comprise a register file and a permutation unit coupled to the
register file. The register file may have a plurality of register
banks and an input to receive a selection signal. The
selection signal may select one or more unit widths of a
register bank as a data element boundary for read or write
operations.

Although the following embodiments are described with
reference to a processor, other embodiments are applicable
to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
present disclosure can be applied to other types of circuits or
semiconductor devices that can benefit from higher pipeline
throughput and improved performance. The teachings of
embodiments of the present disclosure are applicable to any
processor or machine that performs data manipulations.
However, the present disclosure is not limited to processors
or machines that perform 1024 bit, 512 bit, 256 bit, 128 bit,
64 bit, 32 bit, or 16 bit data operations and can be applied
to any processor and machine in which manipulation or
management of data is performed.

Although the below examples describe instruction han-
dling and distribution in the context of execution units and
logic circuits, other embodiments of the present disclosure
can be accomplished by way of a data or instructions stored
on a machine-readable, tangible medium, which when per-
formed by a machine cause the machine to perform func-
tions consistent with at least one embodiment of the disclo-
sure. In one embodiment, functions associated with
embodiments of the present disclosure are embodied in
machine-executable instructions. The instructions can be
used to cause a general-purpose or special-purpose proces-
sor that is programmed with the instructions to perform the
steps of the present disclosure. Embodiments of the present
disclosure may be provided as a computer program product
or software which may include a machine or computer-
readable medium having stored thereon instructions which
may be used to program a computer (or other electronic
devices) to perform one or more operations according to
embodiments of the present disclosure. Alternatively, steps
of embodiments of the present disclosure might be per-
formed by specific hardware components that contain fixed-
function logic for performing the steps, or by any combi-
nation of programmed computer components and fixed-
function hardware components.

Instructions used to program logic to perform embodi-
ments of the disclosure can be stored within a memory in the
system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
anetwork or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-

US 9,459,871 B2

3

ting electronic instructions or information in a form readable
by a machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices in the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specifying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored in any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design is transmitted, to the extent that
copying, buffering, or re-transmission of the electrical signal
is performed, a new copy is made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarily, an article,
such as information encoded into a carrier wave, embodying
techniques of embodiments of the present disclosure.

In modern processors, a number of different execution
units are used to process and execute a variety of code and
instructions. Not all instructions are created equal as some
are quicker to complete while others can take a number of
clock cycles to complete. The faster the throughput of
instructions, the better the overall performance of the pro-
cessor. Thus it would be advantageous to have as many
instructions execute as fast as possible. However, there are
certain instructions that have greater complexity and require
more in terms of execution time and processor resources.
For example, there are floating point instructions, load/store
operations, data moves, etc.

As more computer systems are used in internet, text, and
multimedia applications, additional processor support has
been introduced over time. In one embodiment, an instruc-
tion set may be associated with one or more computer
architectures, including data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
J/0).

In one embodiment, the instruction set architecture (ISA)
may be implemented by one or more micro-architectures,
which includes processor logic and circuits used to imple-
ment one or more instruction sets. Accordingly, processors
with different micro-architectures can share at least a portion
of a common instruction set. For example, Intel® Pentium
4 processors, Intel® Core™ processors, and processors from
Advanced Micro Devices, Inc. of Sunnyvale Calif. imple-
ment nearly identical versions of the x86 instruction set
(with some extensions that have been added with newer
versions), but have different internal designs. Similarly,
processors designed by other processor development com-
panies, such as ARM Holdings, [td., MIPS, or their licens-
ees or adopters, may share at least a portion a common
instruction set, but may include different processor designs.
For example, the same register architecture of the ISA may
be implemented in different ways in different micro-archi-

20

30

40

45

50

55

4

tectures using new or well-known techniques, including
dedicated physical registers, one or more dynamically allo-
cated physical registers using a register renaming mecha-
nism (e.g., the use of a Register Alias Table (RAT), a
Reorder Buffer (ROB) and a retirement register file). In one
embodiment, registers may include one or more registers,
register architectures, register files, or other register sets that
may or may not be addressable by a software programmer.

In one embodiment, an instruction may include one or
more instruction formats. In one embodiment, an instruction
format may indicate various fields (number of bits, location
of bits, etc.) to specify, among other things, the operation to
be performed and the operand(s) on which that operation is
to be performed. Some instruction formats may be further
broken defined by instruction templates (or sub formats).
For example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields and/or defined to have a given
field interpreted differently. In one embodiment, an instruc-
tion is expressed using an instruction format (and, if defined,
in a given one of the instruction templates of that instruction
format) and specifies or indicates the operation and the
operands upon which the operation will operate.

Scientific, financial, auto-vectorized general purpose,
RMS (recognition, mining, and synthesis), and visual and
multimedia applications (e.g., 2D/3D graphics, image pro-
cessing, video compression/decompression, voice recogni-
tion algorithms and audio manipulation) may require the
same operation to be performed on a large number of data
items. In one embodiment, Single Instruction Multiple Data
(SIMD) refers to a type of instruction that causes a processor
to perform an operation on multiple data elements. SIMD
technology may be used in processors that can logically
divide the bits in a register into a number of fixed-sized or
variable-sized data elements, each of which represents a
separate value. For example, in one embodiment, the bits in
a 64-bit register may be organized as a source operand
containing four separate 16-bit data elements, each of which
represents a separate 16-bit value. This type of data may be
referred to as ‘packed’ data type or ‘vector’ data type, and
operands of this data type are referred to as packed data
operands or vector operands. In one embodiment, a packed
data item or vector may be a sequence of packed data
elements stored within a single register, and a packed data
operand or a vector operand may a source or destination
operand of a SIMD instruction (or ‘packed data instruction’
or a ‘vector instruction’). In one embodiment, a SIMD
instruction specifies a single vector operation to be per-
formed on two source vector operands to generate a desti-
nation vector operand (also referred to as a result vector
operand) of the same or different size, with the same or
different number of data elements, and in the same or
different data element order.

SIMD technology, such as that employed by the Intel®
Core™ processors having an instruction set including x86,
MMX™_ Streaming SIMD Extensions (SSE), SSE2, SSE3,
SSE4.1, and SSE4.2 instructions, ARM processors, such as
the ARM Cortex® family of processors having an instruc-
tion set including the Vector Floating Point (VFP) and/or
NEON instructions, and MIPS processors, such as the
Loongson family of processors developed by the Institute of
Computing Technology (ICT) of the Chinese Academy of
Sciences, has enabled a significant improvement in appli-
cation performance (Core™ and MMX™ are registered
trademarks or trademarks of Intel Corporation of Santa
Clara, Calif.).

US 9,459,871 B2

5

In one embodiment, destination and source registers/data
are generic terms to represent the source and destination of
the corresponding data or operation. In some embodiments,
they may be implemented by registers, memory, or other
storage areas having other names or functions than those
depicted. For example, in one embodiment, “DEST1” may
be a temporary storage register or other storage area,
whereas “SRC1” and “SRC2” may be a first and second
source storage register or other storage area, and so forth. In
other embodiments, two or more of the SRC and DEST
storage areas may correspond to different data storage
elements within the same storage area (e.g., a SIMD regis-
ter). In one embodiment, one of the source registers may also
act as a destination register by, for example, writing back the
result of an operation performed on the first and second
source data to one of the two source registers serving as a
destination registers.

FIG. 1A is a block diagram of an exemplary computer
system formed with a processor that includes execution units
to execute an instruction in accordance with one embodi-
ment of the present disclosure. System 100 includes a
component, such as a processor 102 to employ execution
units including logic to perform algorithms for process data,
in accordance with the present disclosure, such as in the
embodiment described herein. System 100 is representative
of processing systems based on the PENTIUM® III, PEN-
TIUM® 4, Xeon™, Itanium®, XScale™ and/or Stron-
gARM™ microprocessors available from Intel Corporation
of Santa Clara, Calif,, although other systems (including
PCs having other microprocessors, engineering worksta-
tions, set-top boxes and the like) may also be used. In one
embodiment, sample system 100 may execute a version of
the WINDOWS™ operating system available from Micro-
soft Corporation of Redmond, Wash., although other oper-
ating systems (UNIX and Linux for example), embedded
software, and/or graphical user interfaces, may also be used.
Thus, embodiments of the present disclosure are not limited
to any specific combination of hardware circuitry and soft-
ware.

Embodiments are not limited to computer systems. Alter-
native embodiments of the present disclosure can be used in
other devices such as handheld devices and embedded
applications. Some examples of handheld devices include
cellular phones, Internet Protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications can include a micro controller, a
digital signal processor (DSP), system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform one or more instructions in accordance with at least
one embodiment.

FIG. 1A is a block diagram of a computer system 100
formed with a processor 102 that includes one or more
execution units 108 to perform an algorithm to perform at
least one instruction in accordance with one embodiment of
the present disclosure. One embodiment may be described in
the context of a single processor desktop or server system,
but alternative embodiments can be included in a multipro-
cessor system. System 100 is an example of a ‘hub’ system
architecture. The computer system 100 includes a processor
102 to process data signals. The processor 102 can be a
complex instruction set computer (CISC) microprocessor, a
reduced instruction set computing (RISC) microprocessor, a
very long instruction word (VLIW) microprocessor, a pro-
cessor implementing a combination of instruction sets, or
any other processor device, such as a digital signal proces-
sor, for example. The processor 102 is coupled to a processor

20

40

45

6

bus 110 that can transmit data signals between the processor
102 and other components in the system 100. The elements
of system 100 perform their conventional functions that are
well known to those familiar with the art.

In one embodiment, the processor 102 includes a cache
104, which may be a Level 0 (L.O) internal cache memory.
Depending on the architecture, the processor 102 can have
a single internal cache or multiple levels of internal cache.
Alternatively, in another embodiment, the cache memory
can reside external to the processor 102. Other embodiments
can also include a combination of both internal and external
caches depending on the particular implementation and
needs. Register file 106 can store different types of data in
various registers including integer registers, floating point
registers, status registers, and instruction pointer register.

Execution unit 108, including logic to perform integer and
floating point operations, also resides in the processor 102.
The processor 102 also includes a microcode (ucode) ROM
that stores microcode for certain macroinstructions. For one
embodiment, execution unit 108 includes logic to handle a
packed instruction set 109. By including the packed instruc-
tion set 109 in the instruction set of a general-purpose
processor 102, along with associated circuitry to execute the
instructions, the operations used by many multimedia appli-
cations may be performed using packed data in a general-
purpose processor 102. Thus, many multimedia applications
can be accelerated and executed more efficiently by using
the full width of a processor’s data bus for performing
operations on packed data. This can eliminate the need to
transfer smaller units of data across the processor’s data bus
to perform one or more operations one data element at a
time.

Alternate embodiments of an execution unit 108 can also
be used in micro controllers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. System 100
includes a memory 120. Memory 120 can be a dynamic
random access memory (DRAM) device, a static random
access memory (SRAM) device, flash memory device, or
other memory device. Memory 120 can store instructions
and/or data represented by data signals that can be executed
by the processor 102.

A system logic chip 116 is coupled to the processor bus
110 and memory 120. The system logic chip 116 in the
illustrated embodiment is a memory controller hub (MCH).
The processor 102 can communicate to the MCH 116 via a
processor bus 110. The MCH 116 provides a high bandwidth
memory path 118 to memory 120 for instruction and data
storage and for storage of graphics commands, data and
textures. The MCH 116 is to direct data signals between the
processor 102, memory 120, and other components in the
system 100 and to bridge the data signals between processor
bus 110, memory 120, and system [/O 122. In some embodi-
ments, the system logic chip 116 can provide a graphics port
for coupling to a graphics controller 112. The MCH 116 is
coupled to memory 120 through a memory interface 118.
The graphics card 112 is coupled to the MCH 116 through
an Accelerated Graphics Port (AGP) interconnect 114.

System 100 uses a proprietary hub interface bus 122 to
couple the MCH 116 to the I/O controller hub (ICH) 130.
The ICH 130 provides direct connections to some [/O
devices via a local 1/0 bus. The local /O bus is a high-speed
1/O bus for connecting peripherals to the memory 120,
chipset, and processor 102. Some examples are the audio
controller, firmware hub (flash BIOS) 128, wireless trans-
ceiver 126, data storage 124, legacy /O controller contain-
ing user input and keyboard interfaces, a serial expansion
port such as Universal Serial Bus (USB), and a network

US 9,459,871 B2

7
controller 134. The data storage device 124 can comprise a
hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

For another embodiment of a system, an instruction in
accordance with one embodiment can be used with a system
on a chip. One embodiment of a system on a chip comprises
of a processor and a memory. The memory for one such
system is a flash memory. The flash memory can be located
on the same die as the processor and other system compo-
nents. Additionally, other logic blocks such as a memory
controller or graphics controller can also be located on a
system on a chip.

FIG. 1B illustrates a data processing system 140 which
implements the principles of one embodiment of the present
disclosure. It will be readily appreciated by one of skill in the
art that the embodiments described herein can be used with
alternative processing systems without departure from the
scope of embodiments of the disclosure.

Computer system 140 comprises a processing core 159
capable of performing at least one instruction in accordance
with one embodiment. For one embodiment, processing core
159 represents a processing unit of any type of architecture,
including but not limited to a CISC, a RISC or a VLIW type
architecture. Processing core 159 may also be suitable for
manufacture in one or more process technologies and by
being represented on a machine readable media in sufficient
detail, may be suitable to facilitate said manufacture.

Processing core 159 comprises an execution unit 142, a
set of register file(s) 145, and a decoder 144. Processing core
159 also includes additional circuitry (not shown) which is
not necessary to the understanding of embodiments of the
present disclosure. Execution unit 142 is used for executing
instructions received by processing core 159. In addition to
performing typical processor instructions, execution unit
142 can perform instructions in packed instruction set 143
for performing operations on packed data formats. Packed
instruction set 143 includes instructions for performing
embodiments of the disclosure and other packed instruc-
tions. Execution unit 142 is coupled to register file 145 by
an internal bus. Register file 145 represents a storage area on
processing core 159 for storing information, including data.
As previously mentioned, it is understood that the storage
area used for storing the packed data is not critical. Execu-
tion unit 142 is coupled to decoder 144. Decoder 144 is used
for decoding instructions received by processing core 159
into control signals and/or microcode entry points. In
response to these control signals and/or microcode entry
points, execution unit 142 performs the appropriate opera-
tions. In one embodiment, the decoder is used to interpret the
opcode of the instruction, which will indicate what operation
should be performed on the corresponding data indicated
within the instruction.

Processing core 159 is coupled with bus 141 for commu-
nicating with various other system devices, which may
include but are not limited to, for example, synchronous
dynamic random access memory (SDRAM) control 146,
static random access memory (SRAM) control 147, burst
flash memory interface 148, personal computer memory
card international association (PCMCIA)/compact flash
(CF) card control 149, liquid crystal display (LLCD) control
150, direct memory access (DMA) controller 151, and
alternative bus master interface 152. In one embodiment,
data processing system 140 may also comprise an 1/O bridge
154 for communicating with various I/O devices via an 1/O
bus 153. Such I/O devices may include but are not limited
to, for example, universal asynchronous receiver/transmitter

10

15

20

25

30

35

40

45

50

55

60

65

8

(UART) 155, universal serial bus (USB) 156, Bluetooth
wireless UART 157 and [/O expansion interface 158.

One embodiment of data processing system 140 provides
for mobile, network and/or wireless communications and a
processing core 159 capable of performing SIMD operations
including a text string comparison operation. Processing
core 159 may be programmed with various audio, video,
imaging and communications algorithms including discrete
transformations such as a Walsh-Hadamard transform, a fast
Fourier transform (FFT), a discrete cosine transform (DCT),
and their respective inverse transforms; compression/de-
compression techniques such as color space transformation,
video encode motion estimation or video decode motion
compensation; and modulation/demodulation (MODEM)
functions such as pulse coded modulation (PCM).

FIG. 1C illustrates yet alternative embodiments of a data
processing system that may include execution units to
execute an instruction in accordance with an embodiment of
the present disclosure. In accordance with one alternative
embodiment, data processing system 160 may include a
main processor 166, a SIMD coprocessor 161, a cache
memory 167, and an input/output system 168. The input/
output system 168 may optionally be coupled to a wireless
interface 169. SIMD coprocessor 161 is capable of perform-
ing operations including instructions in accordance with one
embodiment. Processing core 170 may be suitable for manu-
facture in one or more process technologies and by being
represented on a machine readable media in sufficient detail,
may be suitable to facilitate the manufacture of all or part of
data processing system 160 including processing core 170.

For one embodiment, SIMD coprocessor 161 comprises
an execution unit 162 and a set of register file(s) 164. One
embodiment of main processor 165 comprises a decoder 165
to recognize instructions of instruction set 163 including
instructions in accordance with one embodiment for execu-
tion by execution unit 162. For alternative embodiments,
SIMD coprocessor 161 also comprises at least part of
decoder 165B to decode instructions of instruction set 163.
Processing core 170 also includes additional circuitry (not
shown) which is not necessary to the understanding of
embodiments of the present disclosure.

In operation, the main processor 166 executes a stream of
data processing instructions that control data processing
operations of a general type including interactions with the
cache memory 167, and the input/output system 168.
Embedded within the stream of data processing instructions
are SIMD coprocessor instructions. The decoder 165 of
main processor 166 recognizes these SIMD coprocessor
instructions as being of a type that should be executed by an
attached SIMD coprocessor 161. Accordingly, the main
processor 166 issues these SIMD coprocessor instructions
(or control signals representing SIMD coprocessor instruc-
tions) on the coprocessor bus 171 where from they are
received by any attached SIMD coprocessors. In this case,
the SIMD coprocessor 161 will accept and execute any
received SIMD coprocessor instructions intended for it.

Data may be received via wireless interface 169 for
processing by the SIMD coprocessor instructions. For one
example, voice communication may be received in the form
of a digital signal, which may be processed by the SIMD
coprocessor instructions to regenerate digital audio samples
representative of the voice communications. For another
example, compressed audio and/or video may be received in
the form of a digital bit stream, which may be processed by
the SIMD coprocessor instructions to regenerate digital
audio samples and/or motion video frames. For one embodi-
ment of processing core 170, main processor 166, and a

US 9,459,871 B2

9

SIMD coprocessor 161 are integrated into a single process-
ing core 170 comprising an execution unit 162, a set of
register file(s) 164, and a decoder 165 to recognize instruc-
tions of instruction set 163 including instructions in accor-
dance with one embodiment.

FIG. 2 is a block diagram of the micro-architecture for a
processor 200 that includes logic circuits to perform instruc-
tions in accordance with one embodiment of the present
disclosure. In some embodiments, an instruction in accor-
dance with one embodiment can be implemented to operate
on data elements having sizes of byte, word, doubleword,
quadword, etc., as well as datatypes, such as single and
double precision integer and floating point datatypes. In one
embodiment the in-order front end 201 is the part of the
processor 200 that fetches instructions to be executed and
prepares them to be used later in the processor pipeline. The
front end 201 may include several units. In one embodiment,
the instruction prefetcher 226 fetches instructions from
memory and feeds them to an instruction decoder 228 which
in turn decodes or interprets them. For example, in one
embodiment, the decoder decodes a received instruction into
one or more operations called “micro-instructions” or
“micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, the trace cache 230 takes decoded uops
and assembles them into program ordered sequences or
traces in the uop queue 234 for execution. When the trace
cache 230 encounters a complex instruction, the microcode
ROM 232 provides the vops needed to complete the opera-
tion.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
are needed to complete a instruction, the decoder 228
accesses the microcode ROM 232 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction
decoder 228. In another embodiment, an instruction can be
stored within the microcode ROM 232 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 230 refers to a entry point programmable logic array
(PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences to complete one or more
instructions in accordance with one embodiment from the
micro-code ROM 232. After the microcode ROM 232
finishes sequencing micro-ops for an instruction, the front
end 201 of the machine resumes fetching micro-ops from the
trace cache 230.

The out-of-order execution engine 203 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
re-order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
each vop in one of the two uop queues, one for memory
operations and one for non-memory operations, in front of
the instruction schedulers: memory scheduler, fast scheduler
202, slow/general floating point scheduler 204, and simple
floating point scheduler 206. The uop schedulers 202, 204,
206, determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources

10

15

20

25

30

35

40

45

50

55

60

65

10

and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 202 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule vops for execution.

Register files 208, 210, sit between the schedulers 202,
204, 206, and the execution units 212, 214, 216, 218, 220,
222, 224 in the execution block 211. There is a separate
register file 208, 210, for integer and floating point opera-
tions, respectively. Each register file 208, 210, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been
written into the register file to new dependent uops. The
integer register file 208 and the floating point register file
210 are also capable of communicating data with the other.
For one embodiment, the integer register file 208 is split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 210 of one
embodiment has 128 bit wide entries because floating point
instructions typically have operands from 64 to 128 bits in
width.

The execution block 211 contains the execution units 212,
214, 216, 218, 220, 222, 224, where the instructions are
actually executed. This section includes the register files
208, 210, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 200 of one embodiment is comprised of a
number of execution units: address generation unit (AGU)
212, AGU 214, fast ALU 216, fast ALU 218, slow ALU 220,
floating point ALU 222, floating point move unit 224. For
one embodiment, the floating point execution blocks 222,
224, execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point ALLU 222 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present disclosure, instructions involving a
floating point value may be handled with the floating point
hardware. In one embodiment, the ALU operations go to the
high-speed ALU execution units 216, 218. The fast ALUs
216, 218, of one embodiment can execute fast operations
with an effective latency of half a clock cycle. For one
embodiment, most complex integer operations go to the
slow ALU 220 as the slow ALU 220 includes integer
execution hardware for long latency type of operations, such
as a multiplier, shifts, flag logic, and branch processing.
Memory load/store operations are executed by the AGUs
212, 214. For one embodiment, the integer ALUs 216, 218,
220, are described in the context of performing integer
operations on 64 bit data operands. In alternative embodi-
ments, the ALUs 216, 218, 220, can be implemented to
support a variety of data bits including 16, 32, 128, 256, etc.
Similarly, the floating point units 222, 224, can be imple-
mented to support a range of operands having bits of various
widths. For one embodiment, the floating point units 222,
224, can operate on 128 bits wide packed data operands in
conjunction with SIMD and multimedia instructions.

In one embodiment, the uops schedulers 202, 204, 206,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 200, the processor 200 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. Only the dependent

US 9,459,871 B2

11

operations need to be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
of one embodiment of a processor are also designed to catch
instruction sequences for text string comparison operations.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identify operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
embodiment should not be limited in meaning to a particular
type of circuit. Rather, a register of an embodiment is
capable of storing and providing data, and performing the
functions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register
file of one embodiment also contains eight multimedia
SIMD registers for packed data. For the discussions below,
the registers are understood to be data registers designed to
hold packed data, such as 64 bits wide MMX™ registers
(also referred to as ‘mm’ registers in some instances) in
microprocessors enabled with MMX technology from Intel
Corporation of Santa Clara, Calif. These MMX registers,
available in both integer and floating point forms, can
operate with packed data elements that accompany SIMD
and SSE instructions. Similarly, 128 bits wide XMM regis-
ters relating to SSE2, SSE3, SSE4, or beyond (referred to
generically as “SSEx”) technology and 256 bits wide YMM
registers relating to AVX, VAX2 or AVX3 can also be used
to hold such packed data operands. In one embodiment, in
storing packed data and integer data, the registers do not
need to differentiate between the two data types. In one
embodiment, integer and floating point are either contained
in the same register file or different register files. Further-
more, in one embodiment, floating point and integer data
may be stored in different registers or the same registers.

The processor may be a general-purpose processor, such
as a Core™ 13, 15, 17, 2 Duo and Quad, Xeon™, Itanium™,
XScale™ or StrongARM™ processor, which are available
from Intel Corporation, of Santa Clara, Calif. Alternatively,
the processor may be from another company, such as ARM
Holdings, Ltd, MIPS, etc. The processor may be a special-
purpose processor, such as, for example, a network or
communication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.

The processor may be implemented on one or more chips.
The processor 500 may be a part of and/or may be imple-
mented on one or more substrates using any of a number of
process technologies, such as, for example, BiCMOS,
CMOS, or NMOS.

Referring now to FIG. 3, shown is a block diagram of a
system 300 in accordance with one embodiment of the
present disclosure. The system 300 may include one or more
processors 310, 315, which are coupled to graphics memory
controller hub (GMCH) 320. The optional nature of addi-
tional processors 315 is denoted in FIG. 3 with broken lines.

FIG. 3 illustrates that the GMCH 320 may be coupled to
a memory 340 that may be, for example, a dynamic random
access memory (DRAM). The DRAM may, for at least one
embodiment, be associated with a non-volatile cache.

The GMCH 320 may be a chipset, or a portion of a
chipset. The GMCH 320 may communicate with the pro-
cessor(s) 310, 315 and control interaction between the
processor(s) 310, 315 and memory 340. The GMCH 320

10

15

20

25

30

35

40

45

50

55

60

65

12

may also act as an accelerated bus interface between the
processor(s) 310, 315 and other elements of the system 300.
For at least one embodiment, the GMCH 320 communicates
with the processor(s) 310, 315 via a multi-drop bus, such as
a frontside bus (FSB) 395.

Furthermore, GMCH 320 is coupled to a display 345
(such as a flat panel display). GMCH 320 may include an
integrated graphics accelerator. GMCH 320 is further
coupled to an input/output (I/O) controller hub (ICH) 350,
which may be used to couple various peripheral devices to
system 300. Shown for example in the embodiment of FIG.
3 is an external graphics device 360, which may be a discrete
graphics device coupled to ICH 350, along with another
peripheral device 370.

Alternatively, additional or different processors may also
be present in the system 300. For example, additional
processor(s) 315 may include additional processors(s) that
are the same as processor 310, additional processor(s) that
are heterogeneous or asymmetric to processor 310, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or
any other processor. There can be a variety of differences
between the physical resources 310, 315 in terms of a
spectrum of metrics of merit including architectural, micro-
architectural, thermal, power consumption characteristics,
and the like. These differences may effectively manifest
themselves as asymmetry and heterogeneity amongst the
processors 310, 315. For at least one embodiment, the
various processors 310, 315 may reside in the same die
package.

FIG. 4 illustrates a method 400 according to one embodi-
ment.

The method 400 begins by identifying loop information
corresponding to a plurality of loop instructions (block 410),
before the instructions are executed. Then, the loop instruc-
tions are stored into a queue (block 420). The loop instruc-
tions are replayed from the queue for execution (block 430).
Loop iteration is counted based on the identified loop
information (block 440). A determination of whether the last
iteration of the loop is done (block 450). If the last iteration
is not done, then return to block 430 to continue replaying
the loop instructions. If the last iteration is done, then exit
the loop and execute outside-loop instructions (block 460).

FIG. 5 illustrates a block diagram of a processor 500
according to one embodiment, to implement the method 400
in FIG. 4.

The exemplary processor 500 may include a controller
530, an instruction cache (IC) 510, a Branch Prediction Unit
(BPU) 520, an instruction queue (1Q) 580, and an execution
unit 590.

Optionally (as indicated by dashed lines), the controller
530 may include an instruction decoder (ID) 550, a loop
stream and abort detector 560, and a branch resolution 570.

The controller 530 may identify loop information corre-
sponding to a plurality of loop instructions, before the
instructions are executed. Then, the loop instructions are
stored into the 1Q 580. The loop instructions are replayed
from the IQ 580 for execution. Loop iteration is counted
based on the identified loop information. The 1Q 580 may
determine whether the last iteration of the loop is done. If the
last iteration is not done, then the IQ 580 may continue
replaying the loop instructions. If the last iteration is done,
then the 1Q 580 may exit the loop, and the execution unit 590
may execute outside-loop instructions.

The BPU 520 may provide predictions for branches
direction and target, and may manage the look-ahead pro-
gram Instruction Pointer (IP).

US 9,459,871 B2

13

The IC 510 may fetch instruction chunks, which may be
referred to as fetch parcels (FP), from a L0 instruction cache
(not shown) based on the BPU’s IP.

The controller 530, via the ID 550, may decode the
instructions and saves them into the 1Q 580. The controller
530, via the ID 550, may identify a loop information, for
example a loop hint (LH), the start and the end loop
instructions, or the loop body size. The ID may decode the
LH and marks the current FP as the loop “start”. If the first
loop instruction spans two FPs, the LH may be for example
in the second FP and indicate a S (start offset) of 0. The
controller 530, via the branch resolution 570, may verify
BPU predictions.

The 1Q 580 may replay instructions into the processor
Back End (BE) for execution and may verify the loop
predictions. The IQ 580 may receive the loop information
from the controller 530, and manages the loop replay based
on the loop information.

In an exemplary embodiment, when a loop start is
detected, the ID 550 may count the number of FP’s fetched
until the number is equal to a loop’s body FP size. When the
loop end is detected, the ID 550 may set the loop end mark
in the 1Q 580.

Even though the end FP has a taken branch inside which
may cause an ID Clear, the end loop branch may be
predicted as “not taken” by the ID 550. As a result, the
instructions may continue to flow sequentially to outside-
loop instructions, which are not allocated at the BPU target
array, and thus no ID Clear need to be issued.

When a FP marked by the loop start is stored into the 1Q
580, the 1Q 580 write pointer plus the loop start offset (S)
may be copied into the loop start read pointer and the loop
start signal is asserted.

When the loop start is asserted, the 1Q 580 entries may be
read, but not reclaimed. The 1Q 580 read entries thus may
not be freed, and the 1Q 580 eventually becomes full. As a
result of the IQ 580 being full, additional fetch requests may
be stopped. Thus, the 1Q 580 may be informed of the loop
information, and may be filled with loop instructions ready
for replay of the loop instructions for the first iteration of the
loop. Therefore, there is no need for “learning” time or warm
up time. Consequently, coverage of loop instructions (pro-
portion of amount of loop instructions replayed from an
instruction queue) may be increased, and delay time and
power consumption for loop execution may be reduced.

When a FP marked by the loop end is stored into the IQ
580, the 1Q 580 write pointer plus the loop end offset (E)
may be copied into the loop end read pointer.

When the 1Q 580 read pointer is equal to the loop end read
pointer, the loop replay indication may be asserted, and the
loop start read pointer may copied into the next 1Q 580 read
pointer. The loop then may be replayed at the loop start
location from the IQ 580 for another iteration. Therefore, for
the subsequent iterations of the loop, coverage of loop
instructions may be increased, and delay time and power
consumption for loop execution may be reduced.

Once the ID 550 identifies a loop, the 1Q 580 loop
iteration counter may be initialized, for example by storing
the value of the LH “i” field to the counter.

After each loop iteration, the IQ 580 may mark the loop
end instruction as a taken branch and decrease the loop
iterations counter. Toward the BE side, the execution unit
590 may verify that the end branch takes the correct direc-
tion. On the last loop iteration, when the iterations counter
reaches zero, the 1Q 580 may mark the loop end instruction
as a Not Taken branch, and the loop replay is stopped. The
execution unit 590 thus need not issue a mispredict on the

10

15

20

25

30

35

40

45

50

55

60

65

14

last loop iteration. Since no mispredict is issued in the last
loop iteration, the instruction pipeline need not be flushed,
and delay in the pipeline may be avoided.

The ID 550 may mark the loop with different categories,
for example, as a software detected loop. If initially the loop
count size is undefined (i=0 initially), the ID 550 may mark
the loop differently than a loop with defined count size, for
example, as a hardware detected loop rather than as a
software detected loop.

The ID 550 logic may also detect illegal conditions of the
loop to abort the loop before the loop is replayed from the
1Q 580. For example: assuming the code has a loop with an
internal conditional branch that is always biased as not
taken. At some large loop iteration, this conditional branch
may be taken. As a result, the code execution may not be
inside the loop defined by the loop information.

The loop detector in the embodiments above may be
disabled, for example by using a chicken bit, if not needed.

Therefore, the loop detection in the embodiment above
may improve loop detection and execution without modi-
fying the processor back end.

FIG. 6 illustrates a block diagram of a code translation
optimization, which may be implemented in the controller
530 in FIG. 5, according to one embodiment.

The controller 530 may perform the loop detection and
execution, for example by using a software (SW) based
algorithm, for translation optimization (block 610), in a
processor that supports binary translation. Additionally,
event tracking (block 620) may be performed to collect
statistics data during the program execution.

In an embodiment, the translation optimization in the
binary translation SW may use a special LH to mark the loop
starting instruction, the number of loop instructions, the loop
ending instruction (a backward jump), and/or a predicted
count of loop iterations.

The LH mark may not disrupt normal program flow, and
may be disregarded if the loop detection feature is disabled,
for example by a chicken bit.

The LH may be placed as the first loop instruction and
may specify the following:

i—number of iterations (i>1)

S—a start instruction offset inside loop’s first FP

E—an end instruction offset inside loop’s last FP

N—a number of the FP between the start and the end FP

including the two FPs.

If the translation optimization 610 initially cannot deter-
mine the exact predicted count of loop iterations, the LH
may be marked with i=0, which may cause the replaying of
the loop indefinitely until a mispredict occurs.

The event tracking 620 may be used by the translation
optimization 610 to improve the overall code performance
and efficiency. The event tracking 620 may help the trans-
lation optimization 610 to determine the exact iteration
count. If the exact predicted count of loop iterations was not
initially determined, the translation optimization 610 deter-
mines the iteration count based on additional data from the
event tracking 620, and the LH may be updated in the “i”
field. This update may be implemented by a SMC (self
modifying code) local change, and may not require a full
code retranslation by the translation optimization 610.

Embodiments disclosed herein may be implemented in
hardware, software, firmware, or a combination of such
implementation approaches. Embodiments of the disclosure
may be implemented as computer programs or program code
executing on programmable systems comprising at least one
processor, a storage system (including volatile and non-

US 9,459,871 B2

15

volatile memory and/or storage elements), at least one input
device, and at least one output device.

Program code may be applied to input instructions to
perform the functions described herein and generate output
information. The output information may be applied to one
or more output devices, in known fashion. For purposes of
this application, a processing system includes any system
that has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), magnetic or optical
cards, or any other type of media suitable for storing
electronic instructions.

Accordingly, embodiments of the disclosure also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, a translation optimizer may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the translation optimizer
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The transla-
tion optimizer may be implemented in software, hardware,
firmware, or a combination thereof. The translation opti-
mizer may be on processor, off processor, or part on and part
off processor.

While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative
of and not restrictive on the broad disclosure, and that this
disclosure not be limited to the specific constructions and
arrangements shown and described, since various other

10

25

30

40

45

50

55

16

modifications may occur to those ordinarily skilled in the art
upon studying this disclosure. In an area of technology such
as this, where growth is fast and further advancements are
not easily foreseen, the disclosed embodiments may be
readily modifiable in arrangement and detail as facilitated by
enabling technological advancements without departing
from the principles of the present disclosure or the scope of
the accompanying claims.

What is claimed is:

1. A method comprising:

detecting, by a controller, a loop hint instruction charac-

terizing a loop including a plurality of loop instruc-
tions, before any execution of the loop instructions
occurs, wherein the loop hint instruction includes a
loop iteration information specifying whether the loop
is an indefinite loop or a definite loop, wherein a
definite loop count is specified for the definite loop and
no definite loop count is specified for the indefinite
loop;

storing loop information including the loop hint instruc-

tion and the loop instructions into an instruction queue;
executing the loop instructions in a first iteration;
counting a loop iteration based on the loop information;
determining whether a last iteration of the loop instruc-
tions is completed; and
replaying the loop instructions from the instruction queue
for execution until the last iteration is completed,
wherein at least one of delay time and power consumption
is reduced.

2. The method of claim 1, wherein the controller marks
the loop instructions in the queue, based on the loop infor-
mation.

3. The method of claim 1, wherein the loop hint instruc-
tion and the plurality of loop instructions are contained in
fetch parcels obtained from a cache, and wherein the loop
hint instruction further includes (i) a start instruction offset
inside the loop’s first fetch parcel, (ii) an end instruction
offset inside the loop’s last fetch parcel, and (iii) a total
number of fetch parcels in the loop including the first and
last fetch parcels.

4. A method comprising:

identifying, by a controller, loop information correspond-

ing to a plurality of loop instructions, before any
execution of the loop instructions occurs;

storing the loop instructions into a queue;

executing the loop instructions in a first iteration;

counting a loop iteration based on the identified loop

information;

determining whether a last iteration of the loop instruc-

tions is completed; and

replaying the loop instructions from the queue for execu-

tion until the last iteration is completed,

wherein at least one of delay time and power consumption

is reduced, and wherein the controller updates the loop
instructions in the queue, based on historical execution
information, by replacing an indefinite loop with a
definite loop by a local change via self-modifying code.

5. The method of claim 1, wherein the queue predictively
executes an outside-loop instruction after the last iteration is
completed without a mispredict that would require an
instruction pipeline flush.

6. The method of claim 1, wherein the controller detects
illegal conditions of the loop and aborts the loop before the
loop instructions are replayed.

7. A non-transitory computer readable medium, storing
instructions executable by a processor to perform:

US 9,459,871 B2

17

detecting, by a controller, a loop hint instruction charac-
terizing a loop including a plurality of loop instruc-
tions, before any execution of the loop instructions
occurs, wherein the loop hint instruction includes a
loop iteration information specifying whether the loop
is an indefinite loop or a definite loop, wherein a
definite loop count is specified for the definite loop and
no definite loop count is specified for the indefinite
loop;
storing loop information including the loop hint instruc-
tion and the loop instructions into an instruction queue;
executing the loop instructions in a first iteration;
counting a loop iteration based on the loop information;
determining whether a last iteration of the loop instruc-
tions is completed; and
replaying the loop instructions from the instruction queue
for execution until the last iteration is completed,
wherein at least one of delay time and power consumption
is reduced.
8. The non-transitory computer readable medium of claim
7, wherein the controller marks the loop instructions in the
queue, based on the loop information.
9. The non-transitory computer readable medium of claim
7, wherein the loop hint instruction and the plurality of loop
instructions are contained in fetch parcels obtained from a
cache, and wherein the loop hint instruction further includes
(1) a start instruction offset inside the loop’s first fetch parcel,
(i) an end instruction offset inside the loop’s last fetch
parcel, and (iii) a total number of fetch parcels in the loop
including the first and last fetch parcels.
10. A non-transitory computer readable medium, storing
instructions executable by a processor to perform:
identifying, by a controller, loop information correspond-
ing to a plurality of loop instructions, before any
execution of the loop instructions occurs;
storing the loop instructions into a queue;
executing the loop instructions in a first iteration;
counting a loop iteration based on the identified loop
information;
determining whether a last iteration of the loop instruc-
tions is completed; and
replaying the loop instructions from the queue for execu-
tion until the last iteration is completed,
wherein at least one of delay time and power consumption
is reduced, and wherein the controller updates the loop
instructions in the queue, based on historical execution
information, by replacing an indefinite loop with a
definite loop by a local change via self-modifying code.
11. The non-transitory computer readable medium of
claim 7, wherein the queue predictively executes an outside-
loop instruction after the last iteration is completed without
a mispredict that would require an instruction pipeline flush.
12. The non-transitory computer readable medium of
claim 7, wherein the controller detects illegal conditions of
the loop and aborts the loop before the loop instructions are
replayed.

10

15

20

25

30

40

45

18

13. A processor comprising:

a controller that detects a loop hint instruction character-
izing a loop including a plurality of loop instructions,
before any execution of the loop instructions occurs,
wherein the loop hint instruction includes a loop itera-
tion information specifying whether the loop is an
indefinite loop or a definite loop, a definite loop count
being specified for the definite loop and no definite loop
count being specified for the indefinite loop;

an instruction queue that stores loop information includ-
ing the loop hint instruction and the loop instructions;
and

an execution unit that executes the loop instructions in a
first iteration,

wherein a loop iteration is counted based on the loop
information,

whether a last iteration of the loop instructions is com-
pleted is determined, and

the instruction queue replays the loop instructions for
execution until the last iteration is completed,

wherein at least one of delay time and power consumption
is reduced.

14. The processor of claim 13, wherein the controller
marks the loop instructions in the queue, based on the loop
information.

15. The processor of claim 13, wherein the loop hint
instruction and the plurality of loop instructions are con-
tained in fetch parcels obtained from a cache, and wherein
the loop hint instruction further includes (i) a start instruc-
tion offset inside the loop’s first fetch parcel, (i) an end
instruction offset inside the loop’s last fetch parcel, and (iii)
a total number of fetch parcels in the loop including the first
and last fetch parcels.

16. A processor comprising:

a controller that identifies loop information corresponding
to a plurality of loop instructions, before any execution
of the loop instructions occurs;

a queue that stores the loop instructions; and

an execution unit that executes the loop instructions in a
first iteration,

wherein a loop iteration is counted based on the identified
loop information,

whether a last iteration of the loop instructions is com-
pleted is determined, and

the queue replays the loop instructions for execution until
the last iteration is completed,

wherein at least one of delay time and power consumption
is reduced, and wherein the controller updates the loop
instructions in the queue, based on historical execution
information, by replacing an indefinite loop with a
definite loop by a local change via self-modifying code.

17. The processor of claim 13, wherein the controller
detects illegal conditions of the loop and aborts the loop
before the loop instructions are replayed.

#* #* #* #* #*

